1. Carry out the multiplication of the expressions in each of the following pairs.
(i) 4p, q + r
Solution:
= 4p(q + r)
= 4pq + 4pr
(ii) ab, a – b
Solution:
= ab(a – b)
= a2 b – a b2
(iii) a + b, 7a²b²
Solution:
= (a + b) (7a2b2)
= 7a3b2 + 7a2b3
(iv) a² – 9, 4a
Solution:
= (a2 – 9)(4a)
= 4a3 – 36a
(v) pq + qr + rp, 0
Solution:
= (pq + qr + rp) × 0
= 0
2. Complete the table.

Solution:

3. Find the product.
i) a2 x (2a22) x (4a26)
Solution:
= a2 x (2a22) x (4a26)
= (2 × 4) (a2 × a22 × a26)
= 8 × a2 + 22 + 26
= 8a50
ii) (2/3 xy) ×(-9/10 x2y2)
Solution:
= (2xy/3) ×(-9x2y2/10)
= (2/3 × -9/10) (x × x2 × y × y2)
= (-3/5 x3y3)
(iii) ((-10/3)pq3) × ((6/5)p3q)
Solution:
= (-10pq3/3) ×(6p3q/5)
= ( -10/3 × 6/5 ) (p × p3× q3 × q)
= (-4p4q4)
(iv) (x) × (x2) × (x3) × (x4)
Solution:
= (x) x (x2) x (x3) x (x4)
= x 1 + 2 + 3 + 4
= x10
4. (a) Simplify 3x (4x – 5) + 3 and find its values for (i) x = 3 (ii) x =1/2
Solution:
= 3x (4x – 5) + 3
= (3x (4x) – 3x (5)) +3
= 12x2 – 15x + 3
Now,
(i)Putting x=3 in the equation:
= 12x2 – 15x + 3
= 12(32) – 15 (3) +3
= 108 – 45 + 3
= 66
(ii) Putting x=1/2 in the equation:
= 12x2 – 15x + 3
= 12 (1/2)2 – 15 (1/2) + 3
= 12 (1/4) – 15/2 +3
= 3 – 15/2 + 3
= 6- 15/2
= (12- 15) /2
= -3/2
(b) Simplify a (a2+ a + 1) + 5 and find its value for (i) a = 0, (ii) a = 1 (iii) a = – 1.
Solution:
= a (a2 +a +1) + 5
= a x a2 + a x a + a x 1 + 5
=a3+a2+a+ 5
(i)putting a=0 in the equation:
= 03+02+0+5
=5
(ii) putting a=1 in the equation:
13 + 12 + 1+5
= 1 + 1 + 1+5
= 8
(iii) Putting a = -1 in the equation:
(-1)3+(-1)2 + (-1) +5
= -1 + 1 – 1+5
= 4
5. (a) Add: p ( p – q), q ( q – r) and r ( r – p)
Solution:
= p ( p – q) + q ( q – r) + r ( r – p)
= (p2 – pq) + (q2 – qr) + (r2 – pr)
= p2 + q2 + r2 – pq – qr – pr
(b) Add: 2x (z – x – y) and 2y (z – y – x)
Solution:
= 2x (z – x – y) + 2y (z – y – x)
= (2xz – 2x2 – 2xy) + (2yz – 2y2 – 2xy)
= 2xz – 4xy + 2yz – 2x2 – 2y2
(c) Subtract: 3l (l – 4 m + 5 n) from 4l (10 n – 3 m + 2 l)
Solution:
= 4l (10 n – 3 m + 2 l) – 3l (l – 4 m + 5 n)
= (40ln – 12lm + 8l2) – (3l2 – 12lm + 15ln)
= 40ln – 12lm + 8l2 – 3l2 +12lm -15 ln
= 25 ln + 5l2
(d) Subtract: 3a (a + b + c ) – 2 b (a – b + c) from 4c ( – a + b + c )
Solution:
= 4c (– a + b + c) – (3a (a + b + c) – 2 b (a – b + c))
= (-4ac + 4bc + 4c2) – (3a2 + 3ab + 3ac – (2ab – 2b2 + 2bc))
=-4ac + 4bc + 4c2 – (3a2 + 3ab + 3ac – 2ab + 2b2 – 2bc)
= -4ac + 4bc + 4c2 – 3a2 – 3ab – 3ac +2ab – 2b2 + 2bc
= -7ac + 6bc + 4c2 – 3a2 – ab – 2b2
👍👍👍